Non-Abelian Antibrackets

نویسندگان

  • Jorge Alfaro
  • Poul H. Damgaard
چکیده

The ∆-operator of the Batalin-Vilkovisky formalism is the Hamiltonian BRST charge of Abelian shift transformations in the ghost momentum representation. We generalize this ∆-operator, and its associated hierarchy of antibrackets, to that of an arbitrary non-Abelian and possibly open algebra of any rank. We comment on the possible application of this formalism to closed string field theory. NBI-HE-95-39 hep-th/9511066

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibrackets and non-Abelian equivariant cohomology

The Weil algebra of a semisimple Lie group and an exterior algebra of a symplectic manifold possess antibrackets. They are applied to formulate the models of non{abelian equivariant cohomologies. e-mail: [email protected]

متن کامل

ar X iv : h ep - t h / 95 11 08 1 v 1 1 3 N ov 1 99 5 Antibrackets and non - Abelian equivariant cohomology

The Weil algebra of a semisimple Lie group and an exterior algebra of a sym-plectic manifold possess antibrackets. They are applied to formulate the models of non–abelian equivariant cohomologies.

متن کامل

A Lie Group Structure Underlying the Triplectic Geometry

We consider the pair of degenerate compatible antibrackets satisfying a generalization of the axioms imposed in the triplectic quantization of gauge theories. We show that this actually encodes a Lie group structure, with the antibrackets being related to the left-and right-invariant vector fields on the group. The standard triplectic quantization axioms then correspond to Abelian Lie groups.

متن کامل

On the Canonical Form of a Pair of Compatible Antibrackets

In the triplectic quantization of general gauge theories, we prove a ‘triplectic’ analogue of the Darboux theorem: we show that the doublet of compatible antibrackets can be brought to a weakly-canonical form provided the general triplectic axioms of [2] are imposed together with some additional requirements that can be formulated in terms of marked functions of the antibrackets. The weakly-can...

متن کامل

Universal Lie Formulas for Higher Antibrackets

We prove that the hierarchy of higher antibrackets (aka higher Koszul brackets, aka Koszul braces) of a linear operator ∆ on a commutative superalgebra can be defined by some universal formulas involving iterated Nijenhuis–Richardson brackets having as arguments ∆ and the multiplication operators. As a byproduct, we can immediately extend higher antibrackets to noncommutative algebras in a way ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008